
1

Test Driven Development

Satya Dodda
11/18/08

1

2

Agenda
• Why Agile?
> Waterfall Software Development
> Agile Development

• Test Driven Development
> Regular
> Acceptance

• Key Learnings
> New Testing Concepts
> Best Practices
> Test Tools

3

Why Agile?

4

Waterfall Software Development

5

Issues

6

Agile Development
• What is Agile?
> An iterative and incremental (evolutionary)

process approach to software development
> Performed in a highly collaborative manner with

‘just enough’ ceremony that produces high
quality software which meets the changing
needs of its stakeholders

> Key Properties
– Fail fast
– Done
– Don't blame requirements

7

Waterfall vs Agile

Rather than doing all of
one thing at a time...

...Agile teams do a little
of everything all the time

Requirements Design Code Test

8

Agile Development Methods
• Test Driven Development (TDD)
• SCRUM
• XP
• Feature Driven Development
• Adoptive Software Development
• Dynamic Systems Development Method
• Pragmatic Programming

9

Before test driving...
• Bleeding edge technologies
• No single shoe fits all
• People make difference not processes/tools
• Adopting to change is difficult and some concepts

are radical
• Open source is providing automated tool support for

some key concepts.

10

Test Driven Development

11

Test Driven Development
• (Regular) Test Driven Development (TDD)
> How to build the thing right
> Internal quality

– Best design and easy maintenance

• Acceptance Test Driven Development (ATDD)
> How to build the right thing
> External quality

– Correct features and functionality

12

Traditional Development Cycle

Design Code Test

Test Code Design

Test Driven Development Cycle

The mantra: Only ever write code to fix a failing test

13

Test Phase
• More than just writing a test
> It is designing the interface or API

• Write just enough test code to have a failing test
> Rather than a large test covering lots of parts

• Focus what is needed now
> Rather than over engineering

• Atomic and isolated

14

Code Phase
• Write just enough code to pass the test
• Meet requirements
• Show progress by making the test pass
• Testable code
• No more “90% done” syndrome

• Implementation may not be optimal

15

Refractor Phase
• A disciplined technique for restructuring an

existing body of code, altering its internal structure
without changing the external behavior
• Refactoring(verb) is about applying several small

refactorings(noun)
• Refactorings include
> Removing duplicate code
> Applying OOP principles
> Applying design patterns

16

Test Driven Development Process

Test Code Refactor
or

Red Green Refactor

17

Acceptance Test Driven Development

User Story Acceptance
Test

Implement
Test

Implement
Function

18

User Stories
• An easy format to express requirements
> Domain language

• States who does what and why
> Doctor sees patient history before starting conversation

• Conveys what provides value to the customer, not
how the system should provide that value
• Team collaboration
> Customers, developers and testers

19

Acceptance Test Specifications
• Specifications for the desired behavior and

functionality of a system
• Given a user story, describes how the system

handles certain conditions and inputs
> Show patient information for valid medical number
> Show error message for invalid medical number

• Properties
> Owned by customer
> Written together with customer, developer, tester
> Expressed in the language of the problem domain
> Concise, precise, and unambiguous

20

Implementation
• Tests
> Similar to regular implementation of tests
> Special emphasis

– Can be implemented in a different language than the system
under test

– Declarative and tabular structure
– Code chunks for columns/rows

• Code / functionality
> Regular TDD
> Test-code-refactor cycles

21

ATDD Process

22

Complete Picture

23

Key Learnings

24

Essential Testing Concepts
• Fixtures
• State and interaction based testing
• Test doubles
> Stubs
> Fakes
> Mocks

25

Fixtures
• A shared starting state from which all test cases of a

test class begin their execution
> Like “setup”

• Good design
• Lack duplication
• Allow focused test cases
• Modern test harnesses have great support
> Junit's setup() Php's setup()

26

State and interaction based testing
• State based testing
> Using state to determine pass or fail
> Example: Adding a patient to a database results in non

empty database
> Traditional testing

• Interaction based testing
> Using a sequence of method calls with appropriate

parameters
> Example: IsInRole() and AddPatient() methods are called

with proper parameters
> Agile testing

27

Test Doubles

28

Test Doubles
• Stubs
> Typically return hard coded meaning-less values

• Fakes
> Returns different values based on input

• Mocks
> Records a sequence of method calls. Used to test

complex SUTs like servlet container or EJB containers
> Examples: EasyMock, jMock, and rMock.

29

Best Practices
• Remove duplicate tests
• Do not skip refactoring
• Happy path first
• Use Patterns
> Parameterized, Self Shunt, etc.,

• Choose composition over inheritance
• Avoid static and singleton
• Isolate dependencies

30

TDD Test Tools
• Unit testing
> XUnit
> JUnit

• Continuous integration and builds
> Cruise-Control
> Hudson
> AntHill

31

ATDD Test Tools
• Table based test frameworks
> Fit – Framework for integrated tests

– Smart parsing for simple HTML tables
> FitNesse – Fit in a wiki

– A combination of Fit and wiki
> Selinium

– Controlling browser through HTML tables
• Text based test frameworks
> Exactor
> TextTest

32

Thank you!

32

33

