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Agenda
• Why Agile?
> Waterfall Software Development 
> Agile Development

• Test Driven Development
> Regular
> Acceptance

• Key Learnings
> New Testing Concepts
> Best Practices
> Test Tools
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Why Agile?
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Waterfall Software Development
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Issues
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Agile Development
• What is Agile? 
> An iterative and incremental (evolutionary) 

process approach to software development
> Performed in a highly collaborative manner with 

‘just enough’ ceremony that produces high 
quality software which meets the changing 
needs of its stakeholders

> Key Properties
–  Fail fast
–  Done
– Don't blame requirements
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Waterfall vs Agile

Rather than doing all of 
one thing at a time...

...Agile teams do a little 
of everything all the time

Requirements Design Code Test
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Agile Development Methods
• Test Driven Development (TDD)
• SCRUM
• XP
• Feature Driven Development
• Adoptive Software Development
• Dynamic Systems Development Method
• Pragmatic Programming
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Before test driving...
• Bleeding edge technologies
• No single shoe fits all 
• People make difference not processes/tools
• Adopting to change is difficult and some concepts 

are radical
• Open source is providing automated tool support for 

some key concepts. 
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Test Driven Development
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Test Driven Development
• (Regular) Test Driven Development (TDD)
> How to build the thing right
> Internal quality

–  Best design and easy maintenance

• Acceptance Test Driven Development (ATDD)
> How to build the right thing 
> External quality

–  Correct features and functionality
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Traditional Development Cycle

Design Code Test

Test Code Design

Test Driven Development Cycle

The mantra: Only ever write code to fix a failing test
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Test Phase
• More than just writing a test 
> It is designing the interface or API

• Write just enough test code to have a failing test
> Rather than a large test covering lots of parts

• Focus what is needed now
> Rather than over engineering

• Atomic and isolated
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Code Phase
• Write just enough code to pass the test
• Meet requirements
• Show progress by making the test pass
• Testable code
• No more “90% done” syndrome

• Implementation may not be optimal
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Refractor Phase
• A disciplined technique for restructuring an 

existing body of code, altering its internal structure 
without changing the external behavior
• Refactoring(verb) is about applying several small 

refactorings(noun)
• Refactorings include
> Removing duplicate code
> Applying OOP principles
> Applying design patterns
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Test Driven Development Process

Test Code Refactor
or

Red Green Refactor
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Acceptance Test Driven Development

User Story Acceptance
Test

Implement
Test

Implement
Function
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User Stories
• An easy format to express requirements
> Domain language

• States who does what and why
> Doctor sees patient history before starting conversation

• Conveys what provides value to the customer, not 
how the system should provide that value
• Team collaboration
> Customers, developers and testers 
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Acceptance Test Specifications
• Specifications for the desired behavior and 

functionality of a system
• Given a user story, describes how the system 

handles certain conditions and inputs
> Show patient information for valid medical number
> Show error message for invalid medical number

• Properties
> Owned by customer
> Written together with customer, developer, tester
> Expressed in the language of the problem domain
> Concise, precise, and unambiguous
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Implementation
• Tests
> Similar to regular implementation of tests
> Special emphasis

– Can be implemented in a different language than the system 
under test

– Declarative and tabular structure
– Code chunks for columns/rows 

• Code / functionality
> Regular TDD
> Test-code-refactor cycles
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ATDD Process
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Complete Picture
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Key Learnings
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Essential Testing Concepts
• Fixtures
• State and interaction based testing
• Test doubles
> Stubs
> Fakes
> Mocks
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Fixtures
• A shared starting state from which all test cases of a 

test class begin their execution
> Like “setup”

• Good design
• Lack duplication
• Allow focused test cases
• Modern test harnesses have great support
> Junit's setup() Php's setup() 
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State and interaction based testing
• State based testing
> Using state to determine pass or fail
> Example: Adding a patient to a database results in non 

empty database
> Traditional testing

• Interaction based testing
> Using a sequence of method calls with appropriate 

parameters
> Example: IsInRole() and AddPatient() methods are called 

with proper parameters
> Agile testing
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Test Doubles
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Test Doubles
• Stubs
> Typically return hard coded meaning-less values

• Fakes
> Returns different values based on input

• Mocks
> Records a sequence of method calls. Used to test 

complex SUTs like servlet container or EJB containers
> Examples: EasyMock, jMock, and rMock.
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Best Practices
• Remove duplicate tests
• Do not skip refactoring
• Happy path first
• Use Patterns
> Parameterized, Self Shunt, etc.,

• Choose composition over inheritance
• Avoid static and singleton
• Isolate dependencies
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TDD  Test Tools
• Unit testing 
> XUnit
> JUnit 

• Continuous integration and builds
> Cruise-Control
> Hudson
> AntHill
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ATDD  Test Tools
• Table based test frameworks
> Fit – Framework for integrated tests

– Smart parsing for simple HTML tables
> FitNesse – Fit in a wiki

– A combination of Fit and wiki
> Selinium

– Controlling browser through HTML tables
• Text based test frameworks
> Exactor
> TextTest
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Thank you!
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